
International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-ISSN: 2321-9637

73

Heuristic Based Heterogeneous Longest Approximate
Time to End Algorithm of Scientific Workflows in

Computational Clouds
S.Selvalakshmi1, S.Vinodkumar2

1Research Scholar ,2Assistant Professor
Department of Computer Science

Sree Saraswathi Thyagaraja College,
 Pollachi, Coimbatore, TamilNadu, India -642 107.

Email: 1sslselva@gmail.com , 2vinomsc38@rediffmail.com

Abstract-The elasticity of Cloud infrastructures makes them a suitable platform for execution of deadline-
constrained workflow applications, because resources available to the application can be dynamically increased to
enable application speedup. Existing research in execution of scientific workflows in Clouds either try to minimize
the workflow execution time ignoring deadlines and budgets or focus on the minimization of cost while trying to
meet the application deadline. The proposed new scheduling algorithm called Longest Approximate Time to End
(LATE) that is highly robust to heterogeneity environment. An especially compelling setting where this occurs is a
virtualized data center. We show that cloud scheduler can cause severe performance degradation in heterogeneous
environments. We design a new scheduling algorithm, Longest Approximate Time to End (LATE) that is highly
robust to heterogeneity.

Index Terms: Scientific workflows, LATE algorithm, Virtualization technology, Virtual Machine

1. INTRODUCTION

Cloud computing is an approach of using
computing as utility. Relatively new term for
representing collection of resources which are shared,
scaled dynamically. Based on “pay as you use”
model, resources can be used or released whenever
needed. This refers to both, applications as service to
users and servers in datacenters which support those
services. Cloud computing is a paradigm of
distributed computing to provide the customers on-
demand, utility based computing services. Cloud
itself consists of physical machines in the data
centers of cloud providers. Virtualization technology
is used on these physical machines to run multiple
operating systems simultaneously.

We can define cloud computing as
collection of resources (servers in datacenter), which
are interconnected with each other and using
virtualization technology can be scaled and adapted
dynamically. Cloud computing provides customers,
to start their business without purchasing any
physical hardware, whereas service providers can
rent their resources to customers and make their
profit. Customers have the opportunity to scale up or
down, the resources dynamically to provide QOS for

demand varying application. Cloud computing
enables dynamic and flexible application
provisioning used to virtualization technology.
Beneficiaries of cloud computing can be divided into
a) cloud computing providers, b) cloud computing
customers and c) end-users . Cloud service providers
own the physical resources as datacenters. Cloud
computing customers; use these resources to provide
service to customers and end-users use those
services.

1.1 Virtualization Technology
 Virtualization technology enables to run multiple
operating systems (or virtual machines)
simultaneously on a single physical machine sharing
the same underlying resources. Some of the reason
for using virtualization is a) sufficient capability of
recent computers to run multiple operating systems,
b) using multiple isolated operating systems, resource
utilization can be maximized, c) ability to run
different operating systems on single physical
machine (for example Linux and Windows).

1.2 Cloud scheduling
The primary benefit of moving to Clouds is

application scalability. Traditional way for

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-ISSN: 2321-9637

74

scheduling in cloud computing tended to use the
direct tasks of users as the overhead application base.

The problem is that there may be no

relationship between the overhead application base
and the way that different tasks cause overhead costs
of resources in cloud systems. For large number of
simple tasks this increases the cost and the cost is
decreased if we have small number of complex tasks.

1.3 Workflow scheduling

Workflow scheduling is the problem of
mapping each task to appropriate resource and
allowing the tasks to satisfy some performance
criterion. A workflow consists of a sequence of
concatenated (connected) steps. Workflow mainly
focused with the automation of procedures and also
in order to achieve an overall goal thereby files and
data are passed between participants according to a
defined set of rules. A workflow enables the
structuring of applications in a directed acyclic graph
(DAG) form where each node represents the task and
edges represent the dependencies between the nodes
of the applications .A single workflow consists of a
set of tasks and each task communicate with another
task in the workflow. Workflows are supported by
Workflow Management Systems. Workflow
scheduling discovers resources and allocates tasks on
suitable resources. Workflow scheduling plays a vital
role in the workflow management. Proper scheduling
of workflow can have an efficient impact on the
performance of the system. For proper scheduling in
workflows various scheduling algorithms is used.

2. RELATED WORK

In [13], Rodrigo N. Calheiros(2014) in this paper,
we present the elasticity of Cloud infrastructures
makes them a suitable platform for execution of
deadline-constrained workflow applications, because
resources available to the application can be
dynamically increased to enable application speedup.
Existing research in execution of scientific
workflows in Clouds either try to minimize the
workflow execution time ignoring deadlines and
budgets or focus on the minimization of cost while
trying to meet the application deadline. However,
they implement limited contingency strategies to
correct delays caused by underestimation of tasks
execution time or fluctuations in the delivered
performance of leased public Cloud resources. To
mitigate effects of performance variation of resources
on soft deadlines of workflow applications, we

propose an algorithm that uses idle time of
provisioned resources and budget surplus to replicate
tasks. Simulation experiments with four well-known
scientific workflows show that the proposed
algorithm increases the likelihood of deadlines being
met and reduces the total execution time of
applications as the budget available for replication
increases.

In [14], A.Hirales-Carbajal, A. Tchernykh, R.
Yahyapour (2012) in this paper, we present an
experimental study of deterministic non-preemptive
multiple workflow scheduling strategies on a Grid.
We distinguish twenty five strategies depending on
the type and amount of information they require. We
analyze scheduling strategies that consist of two and
four stages: labeling, adaptive allocation,
prioritization, and parallel machine scheduling. We
apply these strategies in the context of executing the
Cybershake, Epigenomics, Genome, Inspiral, LIGO,
Montage, and SIPHT workflows applications. In
order to provide performance comparison, we
performed a joint analysis considering three metrics.
A case study is given and corresponding results
indicate that well known DAG scheduling algorithms
designed for single DAG and single machine settings
are not well suited for Grid scheduling scenarios,
where user run time estimates are available. We show
that the proposed new strategies outperform other
strategies in terms of approximation factor, mean
critical path waiting time, and critical path slowdown.
The robustness of these strategies is also discussed.

In [25], Matei Zaharia, Andy Konwinski, Anthony
D. Joseph, Randy Katz, Ion Stoica et.al, In this
paper MapReduce is emerging as an important
programming model for large-scale data-parallel
applications such as web indexing, data mining, and
scientific simulation. Hadoop is an open-source
implementation of MapReduce enjoying wide
adoption and is often used for short jobs where low
response time is critical. Hadoop’s performance is
closely tied to its task scheduler, who implicitly
assumes that cluster nodes are homogeneous and
tasks make progress linearly, and uses these
assumptions to decide when to speculatively re-
execute tasks that appear to be stragglers. In practice,
the homogeneity assumptions do not always hold. An
especially compelling setting where this occurs is a
virtualized data center, such as Amazon’s Elastic
Compute Cloud (EC2). We show that Hadoop’s
scheduler can cause severe performance degradation
in heterogeneous environments. We design a new
scheduling algorithm, Longest Approximate Time to

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-ISSN: 2321-9637

75

End (LATE) that is highly robust to heterogeneity.
LATE can improved Hadoop response times by a
factor of 2 in clusters of 200 virtual machines on
EC2.

3. METHODOLOGY

3.1 LATE Scheduler

Proposed a modified version of speculative

execution called Longest Approximate Time to End
(LATE) algorithm that uses a different metric to
schedule tasks for speculative execution.

Instead of considering the progress made by
a task so far, they compute the estimated time
remaining, which gives a more clear assessment of a
straggling tasks’ impact on the overall job response
time. They demonstrated significant improvements
by Longest Approximate Time to End (LATE)
algorithm over the default speculative execution.

We have designed a new speculative task

scheduler by starting from first principles and adding
features needed to behave well in a real environment.
The primary insight behind our algorithm is as
follows: We always speculatively execute the task
that we think will finish farthest into the future,
because this task provides the greatest opportunity for
a speculative copy to overtake the original and reduce
the job’s response time. We explain how we estimate
a task’s finish time based on progress score below.
We call our strategy LATE, for Longest Approximate
Time to End. Intuitively, this greedy policy would be
optimal if nodes ran at consistent speeds and if there
was no cost to launching a speculative task on an
otherwise idle node.

Different methods for estimating time left

can be plugged into LATE. We currently use a
simple heuristic that we found to work well in
practice: We estimate the progress rate of each task
as Progress Score / T , where T is the amount of time
the task has been running for, and then estimate the
time to completion as (1 − ProgressScore) /
ProgressRate. This assumes that tasks make progress
at a roughly constant rate. There are cases where this
heuristic can fail, which we describe later, but it is
effective in typical cloud jobs. To really get the best
chance of beating the original task with the
speculative task, we should also only launch
speculative tasks on fast nodes – not stragglers. We
do this through a simple heuristic don’t launch
speculative tasks on nodes that are below some

threshold, Slow Node Threshold, of total work
performed (sum of progress scores for all succeeded
and in progress tasks on the node). This heuristic
leads to better performance than assigning a
speculative task to the first available node. Another
option would be to allow more than one speculative
copy of each task, but this wastes resources
needlessly.

Finally, to handle the fact that speculative tasks cost
resources, we augment the algorithm with two
heuristics:

• A cap on the number of speculative tasks
that can be running at once, which we
denote SpeculativeCap.

• A SlowTaskThreshold that a task’s progress

rate is compared with to determine whether
it is “slow enough” to be speculated upon.
This prevents needless speculation when
only fast tasks are running.

In summary, the LATE algorithm works as follows:
If a node asks for a new task and there are fewer than
SpeculativeCap speculative tasks running:

• Ignore the request if the node’s total
progress is below SlowNodeThreshold.

• Rank currently running tasks that are not
currently being speculated by estimated time
left.

• Launch a copy of the highest-ranked task
with progress rate below
SlowTaskThreshold.

Like cloud scheduler, we also wait until a

task has run for 1 minute before evaluating it for
speculation. In practice, we have found that a good
choice for the three parameters to LATE is to set the
Speculative Cap to 10% of available task slots and set
the Slow Node Threshold and Slow Task Threshold
to the 25th percentile of node progress and task
progress rates respectively. We use these values in
our evaluation. We have performed a sensitivity
analysis to show that a wide range of thresholds
perform well. Finally, we note that unlike cloud
scheduler, LATE does not take into account data
locality for launching speculative map tasks, although
this is a potential extension.

We assume that because most maps are

data-local, network utilization during the map phase
is low, so it is fine to launch a speculative task on a

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-ISSN: 2321-9637

76

fast node that does not have a local copy of the data.
Locality statistics available in cloud validate this
assumption.

3.2 Speculative Execution

When a node has an empty task slot,
chooses a task for it from one of three categories.
First, any failed tasks are given highest priority. This
is done to detect when a task fails repeatedly due to a
bug and stop the job. Second, non-running tasks are
considered. For maps, tasks with data local to the
node are chosen first. Finally task to execute
speculatively.

To select speculative tasks, monitors task

progress using a progress score between 0 and 1. For
a map, the progress score is the fraction of input data
read. For a reduce task, the execution is divided into
three phases, each of which accounts for 1/3 of the
score:

• The copy phase, when the task fetches map
outputs.

• The sort phase, when map outputs are sorted
by key.

• The reduce phase, when a user-defined
function is applied to the list of map outputs
with each key.

In each phase, the score is the fraction of

data processed. The average progress score of each
category of tasks (maps and reduces) to define a
threshold for speculative execution: When a task’s
progress score is less than the average for its category
minus 0.2, and the task has run for at least one
minute, it is marked as a straggler. All tasks beyond
the threshold are considered “equally slow,” and ties
between them are broken by data locality.

The scheduler also ensures that at most one

speculative copy of each task is running at a time.
Finally, when running multiple jobs, uses a FIFO
discipline where the earliest submitted job is asked
for a task to run, then the second, etc. There is also a
priority system for putting jobs into higher-priority
queues.

3.3 LATE algorithm

The LATE algorithm uses different
strategies in each phase. The first phase namely, task
prioritizing phase is to assign the priority to each
task. In this phase, upward rank (given in LATE
algorithm) and downward rank values for all tasks
are computed. The downward rank is computed by

adding average execution time and communication
time starting from entry task to the task excluding
execution time of the task for which downward rank
is computed. The sum of downward and upward rank
is used to assign the priority to each task. Initially,
the entry task is the selected task and marked as a
critical path task. An immediate successor (of the
selected task) that has the highest priority value is
selected and it is marked as a critical path task. This
process is repeated until the exit node is reached.

In the second phase, task with highest
priority is selected for execution. If the selected task
in on the critical path, then it is scheduled on the
critical path processor. The critical processor is the
one that minimizes the cumulative computation costs
of the tasks on the critical path; otherwise, it is
assigned to a processor, which minimizes the earliest
execution finish time of the task.

Improved Longest Approximate Time to
End (LATE) is a well-established list scheduling
algorithm, which gives higher priority to the
workflow task having higher rank value. This rank
value is calculated by utilizing average execution
time for each task and average communication time
between resources of two successive tasks, where the
tasks in the CP(cumulative process) have
comparatively higher rank values. Then, it sorts the
tasks by the decreasing order of their rank values, and
the task with a higher rank value is given higher
priority. In the resource selection phase, tasks are
scheduled in the order of their priorities, and each
task is assigned to the resource that can complete the
task at the earliest time.

Let us consider |Tx| to be the size of task Tx

and R be the set of resources available with average

processing power |�| = ∑ |�|
�

��=1 Thus, the average

execution time of the task is defined as

 �	
�� = |�|
|�| 	1�

Let
���be the size of data to be transferred between
task Tx and Ty, and R be the set of resources available

with average data processing capacity�� = ∑ ���
�

��=1 .

Thus, the average data transfer time for the

task is defined as

 ��
��� = �������
� 	2�

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-ISSN: 2321-9637

77

E(Tx) and D(Txy) are used to calculate the rank of a
task. For an exit task, the rank value is,

 rank	T � = E	T � 	3�

Now, the rank value of other tasks in the workflow
can be computed recursively on the basis of
Equations (1), (2), and (3) and is represented as

Rank	T �
= E	T � + max'(∈*+,,	-.�	D�T 0� rank�T0� 4�

Because a workflow is represented as a

DAG, the rank values of the tasks are calculated by
traversing the task graph in a breadth-first search
(BFS) manner in the reverse direction of task
dependencies (i.e., starting from the exit tasks). The
advantage of using LATE over min–min or max–min
is that while assigning priorities to the tasks, it
considers the entire workflow rather than focusing on
only unmapped independent tasks at each step.

3.4 Advantages of LATE

The LATE algorithm has several
advantages. First, it is robust to node heterogeneity,
because it will prelaunch only the slowest tasks, and
only a small number of tasks. LATE prioritizes
among the slow tasks based on how much they hurt
job response time. The LATE also caps the number
of speculative tasks to limit contention for shared
resources.

 Second, LATE takes into account node

heterogeneity when deciding where to run
speculative tasks. Finally, by focusing on estimated
time left rather than progress rate, LATE
speculatively executes only tasks that will improve
job response time, rather than any slow tasks.

 For example, if task A is 5x slower than the

mean but has 90% progress, and task B is 2x slower
than the mean but is only at 10% progress, then task
B will be chosen for speculation first, even though it
is has a higher progress rate, because it hurts the
response time more.

LATE allows the slow nodes in the cluster

to be utilized as long as this does not hurt response
time. In contrast, a progress rate based scheduler
would always re-execute tasks from slow nodes,
wasting time spent by the backup task if the original
finishes faster.

4. ALGORITHM IMPLEMENTATION

The LATE heuristic traverses the workflow
from the end to the beginning, computing the upward
rank of each task as the estimated time to overall
workflow completion at the onset of this task. The
computation of a given task's upward rank
incorporates estimates for both the runtimes and data
transfer times of the given task as well as the upward
ranks of all successor tasks. The static schedule is
then assembled by assigning each task in decreasing
order of upward ranks a time slot on a computational
resource, such that the task's scheduled finish time is
minimized.

It is also two-phase task scheduling
algorithm for a bounded number of heterogeneous
processors. The first phase namely, task-prioritizing
phase is to assign the priority to all tasks. To assign
priority, the upward rank of each task is computed.
The upward rank of a task is the critical path of that
task, which is the highest sum of communication time
and average execution time starting from that task to
exit task. Based on upward rank priority will be
assigned to each task. The second phase (processor
selection phase) is to schedule the tasks onto the
processors that give the earliest finish time for the
task. It uses an insertion based policy which
considers the possible insertion of a task in an earliest
idle time slot between two already scheduled tasks on
a processor, should be at least capable of computation
cost of the task to be scheduled and also scheduling
on this idle time slot should preserve precedence
constraints. The time complexity is equal to O (v2 x
p) where v is the number of tasks in a dense graph
and p is the number of processors.

4.1 Task prioritization phase

In the task prioritization phase, priority is
computed and assigned to each task. For assigning
priority to a task, we have defined three attributes
namely, Average Computation Cost (ACC), Data
Transfer Cost (DTC) and the Rank of Predecessor
Task (RPT). The ACC of a task is the average
computation cost on all the m processors and it is
computed by using Eqn. (5)

 ACC	V5� = 6 w58
m

9

8:;
 	5�

The DTC of a task vi is the amount of

communication cost incurred to transfer the data from

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-ISSN: 2321-9637

78

task vi to all its immediate successor tasks and it is
computed at each level l using Eqn.(6)

 DTC	V5� = 6 C58
=

8:;
	6�

i j , where n is the number of nodes in the next level
otherwise = 0, for exit tasks.

The RPT of a task vi is the highest rank of
all its immediate predecessor tasks and it computed
using Eqn.(7)

?
	@A�
= BC�	DC�EF;, DC�EFH … … … … . DC�EFK 	7�

Rank is computed for each task vi based on
its ACC, DTC and RPT values. We have used the
maximum rank of predecessor tasks of task vi as one
of the parameter to calculate the rank of the task vi
and the rank computation is given in Eqn. (8).

Rank	V5� = undOACC	V5�DTC	V5� RPT	V5�Q 	8�

Priority is assigned to all the tasks at each

level l, based on its rank value. At each level, the task
with highest rank value receives the highest priority
followed by task with next highest rank value and so
on. Tie, if any, is broken using ACC value. The task
with minimum ACC value receives higher priority.

For example, for the task graph, the ACC,

DTC, RPT, rank and priority values are computed as
follows: For task v1, there are three immediate
successor tasks v2, v3, v4 and the communication
cost between v1 and to these tasks are 2, 2, 2
respectively. Hence, the DTC of task v1 is 6 (2+2+2).
The RPT value of task v1 is 0, since it is the entry
task. The ACC value of task v1 is 4 and the rank
value of the task v1 is 10 (4+6+0). The priority of
task v1 is 1, since it is the only task in level 1.
Likewise the ACC, DTC, RPT, rank and priority are
computed.

4.2 Processor selection phase

In the processor selection phase, the
processor, which gives improved EFT for a task is
selected and the task is assigned to that processor. It
has an insertion-based policy, which considers the
possible insertion of a task in an earliest idle time slot
between two already scheduled tasks on a processor.
At each level, the EST and EFT value of each task on
every processor is computed using Eqn. (2) and (3).

The tasks are selected for execution based on their
priority value. Task with highest priority is selected
and scheduled on its favorite processor (processor
which gives the improved EFT) for execution
followed by the next highest priority task. Similarly
all the tasks in each level are scheduled on to the
suitable processors.

5. RESULTS

To showcase a possible application of
Dynamic Cloud Simulation as CloudSim2.0, we
simulate the execution of a computationally intensive
workflow using different mechanisms of scheduling
and different levels of instability in the computational
infrastructure. We expect the schedulers to differ in
their robustness to instability, which should be
reflected in diverging workflow execution times. In
this section, we outline the evaluation workflow, the
experimental settings, and the schedulers which we
used in our experiments.

5.1 The Montage Workflow

We constructed an evaluation workflow
using the Montage toolkit. Montage is able to
generate workflows for assembling high-resolution
mosaics of regions of the sky from raw input data. It
has been repeatedly utilized for evaluating scheduling
mechanisms or computational infrastructures for
scientific workflow execution. The schematic
visualization of the Montage workflow for an
example of output is generated by a Montage
workflow. Figure 4.1 shows the one square degree
mosaic of the m17 region of the sky.

Fig 5.1: A one square degree mosaic of the m17
region of the sky.

In our experiments, we used a Montage

workflow which builds a large-scale (twelve square
degree) mosaic of the m17 region of the sky. This

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-ISSN: 2321-9637

79

workflow consists of 43,318 tasks reading and
writing 534 GB of data in total, of which 10 GB are
input and output files which have to be uploaded to
and downloaded from the computational
infrastructure.

5.2 Experimental Settings

The 43,318 task Montage workflow was
executed on a single core of a Dell Power Edge R910
with four Intel Xeon E7- 4870 processors (2.4 GHz,
10 cores) and 1 TB memory, which served as the
reference machine of our experiments. Network file
transfer, local disk I/O and the runtime of each task in
user-mode were captured and written to a trace file.
We parsed the Montage workflow and the trace it
generated on the Xeon E7-4870 machine in Dynamic
Cloud Simulation.

The 43,318 tasks were assigned performance

requirements according to the trace file, i.e., a CPU
workload corresponding to the execution time in
milliseconds, an I/O workload equal to the sizes of
the task's input and output files, and a network
workload according to the external data transfer
caused by the task. When executing the workflow in
Cloud Simulation, all data dependencies were
monitored. Thus, a task could not commence until all
of its predecessor tasks had finished execution.

5.3 Performance Comparison Metrics

We have used the following metrics to
evaluate the proposed algorithm. The proposed
algorithm is compare with Enhanced IC-PCP with
Replication (EIPR). The comparison metrics are
1.Schedule length ratio, 2.Speedup, 3.Runing Time of
the algorithm and 4.Performance Analysis of CPU
Utilization (%).

5.3.1 Schedule Length Ratio (SLR): SLR is the ratio
of the parallel time to the sum of weights of the
critical path tasks on the fastest processor. LATE
algorithm is compared with the algorithm such as
EIPR to calculate the Schedule length ratio. The
given Table 5.1 and Figure 5.2 show the Average
Schedule length ratio (SLR).

Table 5.1. Schedule length ratio

Algorithm Number Of Task
30 40 50 60 70 80 90 100

EIPR 2.6 2.7 3.1 3.2 3.2 3.4 3.6 3.8

Optimized
LATE

2.1 2.2 2.4 2.6 2.8 3.1 3.2 3.3

Fig 5.2 Comparison of no of task vs SLR

5.3.2 Speed Up: Speed up is the ratio of the
sequential execution time to the parallel execution
time. The given Table 5.2 and Figure 5.3 show
Comparison of no of task vs Average Speed Up.

Table 5.2. Average Speed Up

Algorithm Number Of Task
30 40 50 60 70 80 90 100

EIPR 4.2 4.6 5.1 5.5 5.8 6.0 6.2 6.4

Optimize
d LATE

4.8 5.2 5.9 6.4 7.1 8.2 8.7 9.2

Fig 5.3. Comparison of no of task vs Averages

SpeedUp

5.3.3 Running time of the algorithms: The running
time (the scheduling time) of an algorithm is
execution time for obtaining the output schedule of a
given task graph. The given Table 5.3 and Figure 5.4
show Comparison of no of task vs Average Running
times.

0
0.5

1
1.5

2
2.5

3
3.5

4

30 40 50 60 70 80 90 100

A
ve

ra
ge

 S
L

R

Number of Task

EIPR

Optimized
LATE

0
1
2
3
4
5
6
7
8
9

10

30 40 50 60 70 80 90 100

A
ve

ra
ge

 S
pe

ed
U

p

Number of Tasks

EIPR

Optimized
LATE

`

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014

Table 5.3. Average Running Time

Algorithm Number Of Task
30 40 50 60 70

EIPR 1.4 1.47 1.59 2.1 2.5

Optimized
LATE

1.5 1.58 1.6 2.8 3.1

Fig 5.4. Comparison of no of task vs Average

Running Time

5.3.4 Performance Analysis of CPU Utilization (%)
The LATE algorithm is used to number of virtual
machines to calculate the CPU Utilization (%). The
given Table 5.4 and Figure 5.5 show Comparison of
number of Virtual Node vs CPU Utilization (%).

Table 5.4. CPU Utilization (%)

Algorithm Number of Virtual Machine
1 2 3 4

EIPR 81 67 61 52 48

Optimized
LATE

77

63 57 49 45

Fig 5.5. Comparison of no of Virtual Node vs CPU

Utilization (%)

0

1

2

3

4

5

6

7

30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
un

ni
ng

 T
im

e(
M

Se
c)

Number of Tasks

0

20

40

60

80

100

1 2 3 4 5 6 7

C
P

U
 U

ti
liz

at
io

n
(%

)

No of Virtual Node

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-ISSN: 2321-9637

Average Running Time

Number Of Task
70 80 90 100
2.5 2.8 3.5 3.7
3.1 4.6 5.1 6.1

Comparison of no of task vs Average

CPU Utilization (%):
The LATE algorithm is used to number of virtual
machines to calculate the CPU Utilization (%). The

5.5 show Comparison of
number of Virtual Node vs CPU Utilization (%).

CPU Utilization (%)

Number of Virtual Machine
5 6 7 8
48 42 39 36
45 37 34 28

Comparison of no of Virtual Node vs CPU

6. CONCLUSION

Motivated by the real
node heterogeneity, we have analyzed the problem of
speculative execution in cloud. We identified flaws
with both the particular threshold
algorithm in clouds and with progress
algorithms in general. We designed a simple, robust
scheduling algorithm LATE, which uses estimated
finish times to speculatively execute the tasks that
hurt the response times the most. LATE perf
significantly better than clouds default speculative
execution algorithm in real workloads.

ACKNOWLEDGEMENTS

Mr. S.Vinodkumar, Assistant Professor,
PG Department of Computer Science,
Saraswathi Thyagaraja College (Autonomous),
Pollachi, Coimbatore, Tamilnadu, India, for her
excellent guidance, caring out this work. His research
paper wouldn’t have been a success for me without
his cooperation and valuable comments and
suggestions. His understanding, encouraging and
personal guidance have provided a good basis for the
present research paper.

REFERENCES

[1] Michael Armbrust, Armando Fox, Rean Griffith,
Anthony D. Joseph, Randy H.Katz, Andrew
Konwinski, Gunho Lee, David A. Patterson,
Ariel Rabkin, IonStoica, and Matei Zaharia.
Above the clouds: A berkeley view of cloud
computing. Technical Report UCB/EECS
28, EECS Department, University of California,
Berkeley, Feb 2009.

[2] Barham, Paul and Dragovic, Boris and Fraser,
Keir and Hand, Steven and Harris, Tim and Ho,
Alex and Neugebauer, Ro
Warfield, Andrew. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating
systems principles, 2003, 1
177, Bolton Landing, NY, USA,
http://doi.acm.org/10.1145/945445.94
ACM, New York, NY, USA.

[3] Kernel Based Virtual Machine. Website.
http://www.linux-kvm.org

[4] Rodrigo N. Calheiros, Rajiv Ranjan, Anton
Beloglazov, Cesar A. F. De Rose, and Rajkumar
Buyya. CloudSim : A Toolk
Simulation of Cloud Computing Environments
and Evaluation of Resource Provisioning

100

EIPR

Optimized
LATE

7 8

EIPR

Optimized
LATE

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014

80

Motivated by the real-world problem of
node heterogeneity, we have analyzed the problem of
speculative execution in cloud. We identified flaws
with both the particular threshold-based scheduling
algorithm in clouds and with progress-rate-based
algorithms in general. We designed a simple, robust
scheduling algorithm LATE, which uses estimated
finish times to speculatively execute the tasks that
hurt the response times the most. LATE performs
significantly better than clouds default speculative
execution algorithm in real workloads.

ACKNOWLEDGEMENTS

Mr. S.Vinodkumar, Assistant Professor,
PG Department of Computer Science, Sree
Saraswathi Thyagaraja College (Autonomous),

Coimbatore, Tamilnadu, India, for her
excellent guidance, caring out this work. His research
paper wouldn’t have been a success for me without
his cooperation and valuable comments and
suggestions. His understanding, encouraging and

provided a good basis for the

[1] Michael Armbrust, Armando Fox, Rean Griffith,
Anthony D. Joseph, Randy H.Katz, Andrew
Konwinski, Gunho Lee, David A. Patterson,
Ariel Rabkin, IonStoica, and Matei Zaharia.

ds: A berkeley view of cloud
computing. Technical Report UCB/EECS-2009-
28, EECS Department, University of California,

[2] Barham, Paul and Dragovic, Boris and Fraser,
Keir and Hand, Steven and Harris, Tim and Ho,
Alex and Neugebauer, Rolf and Pratt, Ian and
Warfield, Andrew. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating
systems principles, 2003, 1-58113-757-5, 164–
177, Bolton Landing, NY, USA,
http://doi.acm.org/10.1145/945445.945462,
ACM, New York, NY, USA.

[3] Kernel Based Virtual Machine. Website.
kvm.org.

[4] Rodrigo N. Calheiros, Rajiv Ranjan, Anton
Beloglazov, Cesar A. F. De Rose, and Rajkumar
Buyya. CloudSim : A Toolkit for Modeling and
Simulation of Cloud Computing Environments
and Evaluation of Resource Provisioning

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-ISSN: 2321-9637

81

Algorithms. Software: Practice and Experience,
ISSN: 0038-0644, Wiley Press, New York, USA,
2010 (in press, accepted on June 14, 2010).

[5] Rajkumar Buyya, Rajiv Ranjan and Rodrigo N.
Calheiros. Modeling and Simulation of Scalable
Cloud Computing Environments and the
CloudSim Toolkit: Challenges and
Opportunities. In Proceedings of the 7th High
Performance Computing and Simulation
Conference (HPCS 2009, ISBN: 978-1-4244-
4907-1, IEEE Press, New York, USA), Leipzig,
Germany, June 21-24, 2009. [6] Sujesha
Sudevalayam and Purushottam Kulkarni.
Affinity-aware Modeling of CPU Usage for
Provisioning Virtualized Applications. In
Proceedings of IEEE Cloud 2011, the 4th
International Conference on Cloud Computing,
Washington DC, USA.

 [7] The BRITE Output Format. Website.
http://www.cs.bu.edu/brite/user/manual/node29.
html

[8] G. Juve, A. Chervenak, E. Deelman, S. Bharathi,
G. Mehta, and K. Vahi, ‘‘Characterizing and
Profiling Scientific Workflows,’’ Future Gener.
Comput. Syst., vol. 29, no. 3, pp. 682-692, Mar.
2013.

[9] R. Abbott and H. Garcia-Molina, ‘‘Scheduling
Real-Time Transactions,’’ ACM SIGMOD Rec.,
vol. 17, no. 1, pp. 71-81, Mar. 1988.

[10] K.R. Jackson, L. Ramakrishnan,K.Muriki, S.
Canon, S. Cholia, J. Shalf, H.J.Wasserman, and
N.J.Wright, ‘‘Performance Analysis of High
Performance Computing Applications on the
Amazon Web Services Cloud,’’ in Proc. 2nd
Int’l Conf. CloudCom, 2010,pp. 159-168.

[11] Y.K. Kwok and I. Ahmad, ‘‘Static Scheduling
Algorithms for Allocating Directed Task Graphs
to Multiprocessors,’’ ACM Comput. Surveys,
vol. 31, no. 4, pp. 406-471, Dec. 1999.

[12] Z. Shi and J.J. Dongarra, ‘‘Scheduling
Workflow Applications on Processors with
Different Capabilities,’’ Future Gener. Comput.
Syst., vol. 22, no. 6, pp. 665-675, May 2006.

[13] Rodrigo N. Calheiros, Rajkumar Buyya ”
Meeting Deadlines of Scientific Workflows in
Public Clouds with Tasks Replication”, IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 25, NO. 7, JULY 2014,pp.1787 -1796.

[14] A.Hirales-Carbajal, A. Tchernykh, R.
Yahyapour, J.L. Gonza´lez-Garcı´a, T. Ro¨ blitz,
and J.M. Ramı´rez-Alcaraz, ‘‘Multiple
Workflow Scheduling Strategies with User Run
Time Estimates on a Grid,’’ J. Grid Comput.,
vol. 10, no. 2, pp. 325-346, June 2012.

[15] C. Lin and S. Lu, ‘‘SCPOR: An Elastic
Workflow Scheduling Algorithm for Services
Computing,’’ in Proc. Int’l Conf. SOCA, 2011,
pp. 1-8.

[16] C.J.Reynolds, S.Winter, G.Z.Terstyanszky, T.
Kiss,P.Greenwell, S. Acs, and P. Kacsuk,
‘‘Scientific Workflow Makespan Reduction
through Cloud Augmented Desktop Grids,’’ in
Proc. 3rd Int’l Conf. CloudCom, 2011, pp. 18-

[17] M. Xu, L. Cui, H. Wang, and Y. Bi, ‘‘A
Multiple QoS Constrained Scheduling Strategy
of Multiple Workflows for Cloud Computing,’’
in Proc. Int’l Symp. ISPA, 2009, pp. 629-634.

[18] M. Mao and M. Humphrey, ‘‘Auto-Scaling to
Minimize Cost and Meet Application Deadlines
in Cloud Workflows,’’ in Proc. Int’l Conf. High
Perform. Comput., Netw., Storage Anal. (SC),
2011, p. 49.

[19] M. Rahman, X. Li, and H. Palit, ‘‘Hybrid
Heuristic for Scheduling Data Analytics
Workflow Applications in Hybrid Cloud
Environment,’’ in Proc. IPDPSW, 2011, pp. 966-
974.

[20] E.K. Byun, Y.S. Kee, J.S. Kim, and S. Maeng,
‘‘Cost Optimized Provisioning of Elastic
Resources for Application Workflows,’’ Future
Gener. Comput. Syst., vol. 27, no. 8, pp. 1011-
1026,Oct. 2011.

[21] S. Abrishami, M. Naghibzadeh, and D. Epema,
‘‘Deadline- Constrained Workflow Scheduling
Algorithms for IaaS Clouds,’’ Future Gener.
Comput. Syst., vol. 29, no. 1, pp. 158-169, Jan.
2013.

[22] R. Sirvent, R.M. Badia, and J. Labarta, ‘‘Graph-
Based Task Replication for Workflow
Applications,’’ in Proc. 11th Int’l Conf. HPCC,
2009, pp. 20-28.

[23] M. Dobber, R. van der Mei, and G. Koole,
‘‘Dynamic Load Balancing and Job Replication
in a Global-Scale Grid Environment: A
Comparison,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 20,no. 2, pp. 207-218, Feb. 2009.

[24] X. Tang, K. Li, G. Liao, and R. Li, ‘‘List
Scheduling with Duplication for Heterogeneous
Computing Systems,’’ J. Parallel Distrib.
Comput., vol. 70, no. 4, pp. 323-329, Apr. 2010.

[25] K. Plankensteiner and R. Prodan, ‘‘Meeting Soft
Deadlines in Scientific Workflows Using
Resubmission Impact,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 5, pp. 890-901, May
2012.

 [26] W. Chen and E. Deelman, ‘‘WorkflowSim: A
Toolkit for Simulating Scientific Workflows in

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-ISSN: 2321-9637

82

Distributed Environments,’’ in Proc. 8th Int’l
Conf. E-Science, 2012, pp. 1-8.

 [27] Matei Zaharia, Andy Konwinski, Anthony D.
Joseph, Randy Katz, Ion Stoica, “Improving
MapReduce Performance in Heterogeneous
Environments” , USENIX Association, 8th
USENIX Symposium on Operating Systems
Design and Implementation, pp. 29 – 42.

