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Abstract-The elasticity of Cloud infrastructures makes them a suitable platform for execution of deadline-
constrained workflow applications, because resources available to the application can be dynamically increased to 
enable application speedup. Existing research in execution of scientific workflows in Clouds either try to minimize 
the workflow execution time ignoring deadlines and budgets or focus on the minimization of cost while trying to 
meet the application deadline. The proposed new scheduling algorithm called Longest Approximate Time to End 
(LATE) that is highly robust to heterogeneity environment. An especially compelling setting where this occurs is a 
virtualized data center. We show that cloud scheduler can cause severe performance degradation in heterogeneous 
environments. We design a new scheduling algorithm, Longest Approximate Time to End (LATE) that is highly 
robust to heterogeneity. 

Index Terms: Scientific workflows, LATE algorithm, Virtualization technology, Virtual Machine 
 
1. INTRODUCTION 

Cloud computing is an approach of using 
computing as utility. Relatively new term for 
representing collection of resources which are shared, 
scaled dynamically. Based on “pay as you use” 
model, resources can be used or released whenever 
needed. This refers to both, applications as service to 
users and servers in datacenters which support those 
services. Cloud computing is a paradigm of 
distributed computing to provide the customers on-
demand, utility based computing services. Cloud 
itself consists of physical machines in the data 
centers of cloud providers. Virtualization technology 
is used on these physical machines to run multiple 
operating systems simultaneously. 

We can define cloud computing as 
collection of resources (servers in datacenter), which 
are interconnected with each other and using 
virtualization technology can be scaled and adapted 
dynamically. Cloud computing provides customers, 
to start their business without purchasing any 
physical hardware, whereas service providers can 
rent their resources to customers and make their 
profit. Customers have the opportunity to scale up or 
down, the resources dynamically to provide QOS for 

demand varying application. Cloud computing 
enables dynamic and flexible application 
provisioning used to virtualization technology. 
Beneficiaries of cloud computing can be divided into 
a) cloud computing providers, b) cloud computing 
customers and c) end-users . Cloud service providers 
own the physical resources as datacenters. Cloud 
computing customers; use these resources to provide 
service to customers and end-users use those 
services. 

1.1 Virtualization Technology 
 Virtualization technology enables to run multiple 
operating systems (or virtual machines) 
simultaneously on a single physical machine sharing 
the same underlying resources. Some of the reason 
for using virtualization is a) sufficient capability of 
recent computers to run multiple operating systems, 
b) using multiple isolated operating systems, resource 
utilization can be maximized, c) ability to run 
different operating systems on single physical 
machine (for example Linux and Windows). 

1.2 Cloud scheduling 
The primary benefit of moving to Clouds is 

application scalability. Traditional way for 
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scheduling in cloud computing tended to use the 
direct tasks of users as the overhead application base. 

 
The problem is that there may be no 

relationship between the overhead application base 
and the way that different tasks cause overhead costs 
of resources in cloud systems. For large number of 
simple tasks this increases the cost and the cost is 
decreased if we have small number of complex tasks. 
 
1.3 Workflow scheduling 
 

Workflow scheduling is the problem of 
mapping each task to appropriate resource and 
allowing the tasks to satisfy some performance 
criterion. A workflow consists of a sequence of 
concatenated (connected) steps. Workflow mainly 
focused with the automation of procedures and also 
in order to achieve an overall goal thereby files and 
data are passed between participants according to a 
defined set of rules. A workflow enables the 
structuring of applications in a directed acyclic graph 
(DAG) form where each node represents the task and 
edges represent the dependencies between the nodes 
of the applications .A single workflow consists of a 
set of tasks and each task communicate with another 
task in the workflow. Workflows are supported by 
Workflow Management Systems. Workflow 
scheduling discovers resources and allocates tasks on 
suitable resources. Workflow scheduling plays a vital 
role in the workflow management. Proper scheduling 
of workflow can have an efficient impact on the 
performance of the system. For proper scheduling in 
workflows various scheduling algorithms is used.  

 

2. RELATED WORK 

In [13], Rodrigo N. Calheiros(2014) in this paper, 
we present the elasticity of Cloud infrastructures 
makes them a suitable platform for execution of 
deadline-constrained workflow applications, because 
resources available to the application can be 
dynamically increased to enable application speedup. 
Existing research in execution of scientific 
workflows in Clouds either try to minimize the 
workflow execution time ignoring deadlines and 
budgets or focus on the minimization of cost while 
trying to meet the application deadline. However, 
they implement limited contingency strategies to 
correct delays caused by underestimation of tasks 
execution time or fluctuations in the delivered 
performance of leased public Cloud resources. To 
mitigate effects of performance variation of resources 
on soft deadlines of workflow applications, we 

propose an algorithm that uses idle time of 
provisioned resources and budget surplus to replicate 
tasks. Simulation experiments with four well-known 
scientific workflows show that the proposed 
algorithm increases the likelihood of deadlines being 
met and reduces the total execution time of 
applications as the budget available for replication 
increases. 

In [14], A.Hirales-Carbajal, A. Tchernykh, R. 
Yahyapour (2012) in this paper, we present an 
experimental study of deterministic non-preemptive 
multiple workflow scheduling strategies on a Grid. 
We distinguish twenty five strategies depending on 
the type and amount of information they require. We 
analyze scheduling strategies that consist of two and 
four stages: labeling, adaptive allocation, 
prioritization, and parallel machine scheduling. We 
apply these strategies in the context of executing the 
Cybershake, Epigenomics, Genome, Inspiral, LIGO, 
Montage, and SIPHT workflows applications. In 
order to provide performance comparison, we 
performed a joint analysis considering three metrics. 
A case study is given and corresponding results 
indicate that well known DAG scheduling algorithms 
designed for single DAG and single machine settings 
are not well suited for Grid scheduling scenarios, 
where user run time estimates are available. We show 
that the proposed new strategies outperform other 
strategies in terms of approximation factor, mean 
critical path waiting time, and critical path slowdown. 
The robustness of these strategies is also discussed. 

In [25], Matei Zaharia, Andy Konwinski, Anthony 
D. Joseph, Randy Katz, Ion Stoica et.al, In this 
paper MapReduce is emerging as an important 
programming model for large-scale data-parallel 
applications such as web indexing, data mining, and 
scientific simulation. Hadoop is an open-source 
implementation of MapReduce enjoying wide 
adoption and is often used for short jobs where low 
response time is critical. Hadoop’s performance is 
closely tied to its task scheduler, who implicitly 
assumes that cluster nodes are homogeneous and 
tasks make progress linearly, and uses these 
assumptions to decide when to speculatively re-
execute tasks that appear to be stragglers. In practice, 
the homogeneity assumptions do not always hold. An 
especially compelling setting where this occurs is a 
virtualized data center, such as Amazon’s Elastic 
Compute Cloud (EC2). We show that Hadoop’s 
scheduler can cause severe performance degradation 
in heterogeneous environments. We design a new 
scheduling algorithm, Longest Approximate Time to 
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End (LATE) that is highly robust to heterogeneity.  
LATE can improved Hadoop response times by a 
factor of 2 in clusters of 200 virtual machines on 
EC2. 
 
3. METHODOLOGY 
 
3.1 LATE Scheduler   

  
Proposed a modified version of speculative 

execution called Longest Approximate Time to End 
(LATE) algorithm that uses a different metric to 
schedule tasks for speculative execution. 
 

Instead of considering the progress made by 
a task so far, they compute the estimated time 
remaining, which gives a more clear assessment of a 
straggling tasks’ impact on the overall job response 
time. They demonstrated significant improvements 
by Longest Approximate Time to End (LATE) 
algorithm over the default speculative execution. 

 
We have designed a new speculative task 

scheduler by starting from first principles and adding 
features needed to behave well in a real environment. 
The primary insight behind our algorithm is as 
follows: We always speculatively execute the task 
that we think will finish farthest into the future, 
because this task provides the greatest opportunity for 
a speculative copy to overtake the original and reduce 
the job’s response time. We explain how we estimate 
a task’s finish time based on progress score below. 
We call our strategy LATE, for Longest Approximate 
Time to End. Intuitively, this greedy policy would be 
optimal if nodes ran at consistent speeds and if there 
was no cost to launching a speculative task on an 
otherwise idle node.  

 
Different methods for estimating time left 

can be plugged into LATE. We currently use a 
simple heuristic that we found to work well in 
practice: We estimate the progress rate of each task 
as Progress Score / T , where T is the amount of time 
the task has been running for, and then estimate the 
time to completion as (1 − ProgressScore) / 
ProgressRate. This assumes that tasks make progress 
at a roughly constant rate. There are cases where this 
heuristic can fail, which we describe later, but it is 
effective in typical cloud jobs. To really get the best 
chance of beating the original task with the 
speculative task, we should also only launch 
speculative tasks on fast nodes – not stragglers. We 
do this through a simple heuristic don’t launch 
speculative tasks on nodes that are below some 

threshold, Slow Node Threshold, of total work 
performed (sum of progress scores for all succeeded 
and in progress tasks on the node). This heuristic 
leads to better performance than assigning a 
speculative task to the first available node. Another 
option would be to allow more than one speculative 
copy of each task, but this wastes resources 
needlessly. 

 
Finally, to handle the fact that speculative tasks cost 
resources, we augment the algorithm with two 
heuristics: 
 

• A cap on the number of speculative tasks 
that can be running at once, which we 
denote SpeculativeCap. 

 
• A SlowTaskThreshold that a task’s progress 

rate is compared with to determine whether 
it is “slow enough” to be speculated upon. 
This prevents needless speculation when 
only fast tasks are running. 

 
In summary, the LATE algorithm works as follows:  
If a node asks for a new task and there are fewer than 
SpeculativeCap speculative tasks running: 
 

• Ignore the request if the node’s total 
progress is below SlowNodeThreshold. 

•  Rank currently running tasks that are not 
currently being speculated by estimated time 
left. 

• Launch a copy of the highest-ranked task 
with progress rate below 
SlowTaskThreshold. 
 
Like cloud scheduler, we also wait until a 

task has run for 1 minute before evaluating it for 
speculation. In practice, we have found that a good 
choice for the three parameters to LATE is to set the 
Speculative Cap to 10% of available task slots and set 
the Slow Node Threshold and Slow Task Threshold 
to the 25th percentile of node progress and task 
progress rates respectively. We use these values in 
our evaluation. We have performed a sensitivity 
analysis to show that a wide range of thresholds 
perform well. Finally, we note that unlike cloud 
scheduler, LATE does not take into account data 
locality for launching speculative map tasks, although 
this is a potential extension. 

 
We assume that because most maps are 

data-local, network utilization during the map phase 
is low, so it is fine to launch a speculative task on a 
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fast node that does not have a local copy of the data. 
Locality statistics available in cloud validate this 
assumption. 

 
3.2 Speculative Execution 

When a node has an empty task slot, 
chooses a task for it from one of three categories. 
First, any failed tasks are given highest priority. This 
is done to detect when a task fails repeatedly due to a 
bug and stop the job. Second, non-running tasks are 
considered. For maps, tasks with data local to the 
node are chosen first. Finally task to execute 
speculatively.  

 
To select speculative tasks, monitors task 

progress using a progress score between 0 and 1. For 
a map, the progress score is the fraction of input data 
read. For a reduce task, the execution is divided into 
three phases, each of which accounts for 1/3 of the 
score: 

• The copy phase, when the task fetches map 
outputs. 

• The sort phase, when map outputs are sorted 
by key. 

• The reduce phase, when a user-defined 
function is applied to the list of map outputs 
with each key. 
 
In each phase, the score is the fraction of 

data processed. The average progress score of each 
category of tasks (maps and reduces) to define a 
threshold for speculative execution: When a task’s 
progress score is less than the average for its category 
minus 0.2, and the task has run for at least one 
minute, it is marked as a straggler. All tasks beyond 
the threshold are considered “equally slow,” and ties 
between them are broken by data locality. 

  
The scheduler also ensures that at most one 

speculative copy of each task is running at a time. 
Finally, when running multiple jobs, uses a FIFO 
discipline where the earliest submitted job is asked 
for a task to run, then the second, etc. There is also a 
priority system for putting jobs into higher-priority 
queues. 
 
3.3 LATE algorithm 
 

The LATE algorithm uses different 
strategies in each phase. The first phase namely, task 
prioritizing phase is to assign the priority to each 
task. In this phase, upward rank (given in LATE 
algorithm) and downward rank values for all tasks 
are computed. The downward rank is computed by 

adding average execution time and communication 
time starting from entry task to the task excluding 
execution time of the task for which downward rank 
is computed. The sum of downward and upward rank 
is used to assign the priority to each task. Initially, 
the entry task is the selected task and marked as a 
critical path task. An immediate successor (of the 
selected task) that has the highest priority value is 
selected and it is marked as a critical path task. This 
process is repeated until the exit node is reached. 

In the second phase, task with highest   
priority is selected for execution. If the selected task 
in on the critical path, then it is scheduled on the 
critical path processor. The critical processor is the 
one that minimizes the cumulative computation costs 
of the tasks on the critical path; otherwise, it is 
assigned to a processor, which minimizes the earliest 
execution finish time of the task.  

Improved Longest Approximate Time to 
End (LATE) is a well-established list scheduling 
algorithm, which gives higher priority to the 
workflow task having higher rank value. This rank 
value is calculated by utilizing average execution 
time for each task and average communication time 
between resources of two successive tasks, where the 
tasks in the CP(cumulative process) have 
comparatively higher rank values. Then, it sorts the 
tasks by the decreasing order of their rank values, and 
the task with a higher rank value is given higher 
priority. In the resource selection phase, tasks are 
scheduled in the order of their priorities, and each 
task is assigned to the resource that can complete the 
task at the earliest time. 

 
Let us consider |Tx| to be the size of task Tx 

and R be the set of resources available with average 

processing power |�| = ∑ |�|
�

��=1  Thus, the average 

execution time of the task is defined as 
 

                                             �	
�� = |�|
|�|                  	1� 

 
Let 
���be the size of data to be transferred between 
task Tx and Ty, and R be the set of resources available 

with average data processing capacity�� = ∑ ���
�

��=1 . 

 
Thus, the average data transfer time for the 

task is defined as 

                                         ��
��� = �������
�                    	2� 

 



International Journal of Research in Advent Technology, Vol.2, No.10, October 2014 
E-ISSN: 2321-9637 

 

77 

 

E(Tx) and D(Txy) are used to calculate the rank of a 
task. For an exit task, the rank value is, 

                                       rank	T � = E	T �             	3� 

Now, the rank value of other tasks in the workflow 
can be computed recursively on the basis of 
Equations (1), (2), and (3) and is represented as 
 
Rank	T �
= E	T �  + max'(∈*+,,	-.�	D�T 0� rank�T0�            4� 

 
Because a workflow is represented as a 

DAG, the rank values of the tasks are calculated by 
traversing the task graph in a breadth-first search 
(BFS) manner in the reverse direction of task 
dependencies (i.e., starting from the exit tasks). The 
advantage of using LATE over min–min or max–min 
is that while assigning priorities to the tasks, it 
considers the entire workflow rather than focusing on 
only unmapped independent tasks at each step. 
 
3.4 Advantages of LATE 
 

The LATE algorithm has several 
advantages. First, it is robust to node heterogeneity, 
because it will prelaunch only the slowest tasks, and 
only a small number of tasks. LATE prioritizes 
among the slow tasks based on how much they hurt 
job response time. The LATE also caps the number 
of speculative tasks to limit contention for shared 
resources. 

 
 Second, LATE takes into account node 

heterogeneity when deciding where to run 
speculative tasks. Finally, by focusing on estimated 
time left rather than progress rate, LATE 
speculatively executes only tasks that will improve 
job response time, rather than any slow tasks. 

 
 For example, if task A is 5x slower than the 

mean but has 90% progress, and task B is 2x slower 
than the mean but is only at 10% progress, then task 
B will be chosen for speculation first, even though it 
is has a higher progress rate, because it hurts the 
response time more.  

 
LATE allows the slow nodes in the cluster 

to be utilized as long as this does not hurt response 
time. In contrast, a progress rate based scheduler 
would always re-execute tasks from slow nodes, 
wasting time spent by the backup task if the original 
finishes faster. 
 

4. ALGORITHM IMPLEMENTATION 

The LATE heuristic traverses the workflow 
from the end to the beginning, computing the upward 
rank of each task as the estimated time to overall 
workflow completion at the onset of this task. The 
computation of a given task's upward rank 
incorporates estimates for both the runtimes and data 
transfer times of the given task as well as the upward 
ranks of all successor tasks. The static schedule is 
then assembled by assigning each task in decreasing 
order of upward ranks a time slot on a computational 
resource, such that the task's scheduled finish time is 
minimized.  

It is also two-phase task scheduling 
algorithm for a bounded number of heterogeneous 
processors. The first phase namely, task-prioritizing 
phase is to assign the priority to all tasks. To assign 
priority, the upward rank of each task is computed. 
The upward rank of a task is the critical path of that 
task, which is the highest sum of communication time 
and average execution time starting from that task to 
exit task. Based on upward rank priority will be 
assigned to each task. The second phase (processor 
selection phase) is to schedule the tasks onto the 
processors that give the earliest finish time for the 
task. It uses an insertion based policy which 
considers the possible insertion of a task in an earliest 
idle time slot between two already scheduled tasks on 
a processor, should be at least capable of computation 
cost of the task to be scheduled and also scheduling 
on this idle time slot should preserve precedence 
constraints. The time complexity is equal to O (v2 x 
p) where v is the number of tasks in a dense graph 
and p is the number of processors. 

 
4.1 Task prioritization phase 
 

In the task prioritization phase, priority is 
computed and assigned to each task. For assigning 
priority to a task, we have defined three attributes 
namely, Average Computation Cost (ACC), Data 
Transfer Cost (DTC) and the Rank of Predecessor 
Task (RPT). The ACC of a task is the average 
computation cost on all the m processors and it is 
computed by using Eqn. (5) 

 

                               ACC	V5� = 6 w58
m

9

8:;
                      	5� 

 
The DTC of a task vi is the amount of 

communication cost incurred to transfer the data from 
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task vi to all its immediate successor tasks and it is 
computed at each level l using Eqn.(6) 

 

                              DTC	V5� = 6 C58                             
=

8:;
	6� 

i j , where n is the number of nodes in the next level 
otherwise = 0, for exit tasks. 
 

The RPT of a task vi is the highest rank of 
all its immediate predecessor tasks and it computed 
using Eqn.(7) 
 
?
	@A�
= BC�	DC�EF;, DC�EFH … … … … . DC�EFK              	7� 
 

Rank is computed for each task vi based on 
its ACC, DTC and RPT values. We have used the 
maximum rank of predecessor tasks of task vi as one 
of the parameter to calculate the rank of the task vi 
and the rank computation is given in Eqn. (8). 

 
Rank	V5� = undOACC	V5�DTC	V5�  RPT	V5�Q     	8� 

 
Priority is assigned to all the tasks at each 

level l, based on its rank value. At each level, the task 
with highest rank value receives the highest priority 
followed by task with next highest rank value and so 
on. Tie, if any, is broken using ACC value. The task 
with minimum ACC value receives higher priority.  

 
For example, for the task graph, the ACC, 

DTC, RPT, rank and priority values are computed as 
follows: For task v1, there are three immediate 
successor tasks v2, v3, v4 and the communication 
cost between v1 and to these tasks are 2, 2, 2 
respectively. Hence, the DTC of task v1 is 6 (2+2+2). 
The RPT value of task v1 is 0, since it is the entry 
task. The ACC value of task v1 is 4 and the rank 
value of the task v1 is 10 (4+6+0). The priority of 
task v1 is 1, since it is the only task in level 1. 
Likewise the ACC, DTC, RPT, rank and priority are 
computed. 

 
4.2 Processor selection phase 

In the processor selection phase, the 
processor, which gives improved EFT for a task is 
selected and the task is assigned to that processor. It 
has an insertion-based policy, which considers the 
possible insertion of a task in an earliest idle time slot 
between two already scheduled tasks on a processor. 
At each level, the EST and EFT value of each task on 
every processor is computed using Eqn. (2) and (3). 

The tasks are selected for execution based on their 
priority value. Task with highest priority is selected 
and scheduled on its favorite processor (processor 
which gives the improved EFT) for execution 
followed by the next highest priority task. Similarly 
all the tasks in each level are scheduled on to the 
suitable processors.  

 
5. RESULTS   

To showcase a possible application of 
Dynamic Cloud Simulation as CloudSim2.0, we 
simulate the execution of a computationally intensive 
workflow using different mechanisms of scheduling 
and different levels of instability in the computational 
infrastructure. We expect the schedulers to differ in 
their robustness to instability, which should be 
reflected in diverging workflow execution times. In 
this section, we outline the evaluation workflow, the 
experimental settings, and the schedulers which we 
used in our experiments.  

5.1 The Montage Workflow 
 

We constructed an evaluation workflow 
using the Montage toolkit. Montage is able to 
generate workflows for assembling high-resolution 
mosaics of regions of the sky from raw input data. It 
has been repeatedly utilized for evaluating scheduling 
mechanisms or computational infrastructures for 
scientific workflow execution. The schematic 
visualization of the Montage workflow for an 
example of output is generated by a Montage 
workflow. Figure 4.1 shows the one square degree 
mosaic of the m17 region of the sky. 

 

 
 

Fig 5.1: A one square degree mosaic of the m17 
region of the sky. 

 
In our experiments, we used a Montage 

workflow which builds a large-scale (twelve square 
degree) mosaic of the m17 region of the sky. This 



International Journal of Research in Advent Technology, Vol.2, No.10, October 2014 
E-ISSN: 2321-9637 

 

79 

 

workflow consists of 43,318 tasks reading and 
writing 534 GB of data in total, of which 10 GB are 
input and output files which have to be uploaded to 
and downloaded from the computational 
infrastructure. 

 
5.2 Experimental Settings 
 

The 43,318 task Montage workflow was 
executed on a single core of a Dell Power Edge R910 
with four Intel Xeon E7- 4870 processors (2.4 GHz, 
10 cores) and 1 TB memory, which served as the 
reference machine of our experiments. Network file 
transfer, local disk I/O and the runtime of each task in 
user-mode were captured and written to a trace file. 
We parsed the Montage workflow and the trace it 
generated on the Xeon E7-4870 machine in Dynamic 
Cloud Simulation.  

 
The 43,318 tasks were assigned performance 

requirements according to the trace file, i.e., a CPU 
workload corresponding to the execution time in 
milliseconds, an I/O workload equal to the sizes of 
the task's input and output files, and a network 
workload according to the external data transfer 
caused by the task. When executing the workflow in 
Cloud Simulation, all data dependencies were 
monitored. Thus, a task could not commence until all 
of its predecessor tasks had finished execution. 

 
5.3 Performance Comparison Metrics  

We have used the following metrics to 
evaluate the proposed algorithm. The proposed 
algorithm is compare with Enhanced IC-PCP with 
Replication (EIPR). The comparison metrics are 
1.Schedule length ratio, 2.Speedup, 3.Runing Time of 
the algorithm and 4.Performance Analysis of CPU 
Utilization (%). 

5.3.1 Schedule Length Ratio (SLR): SLR is the ratio 
of the parallel time to the sum of weights of the 
critical path tasks on the fastest processor. LATE 
algorithm is compared with the algorithm such as 
EIPR to calculate the Schedule length ratio. The 
given Table 5.1 and Figure 5.2 show the Average 
Schedule length ratio (SLR). 

Table 5.1. Schedule length ratio 

Algorithm Number Of Task 
30 40 50 60 70 80 90 100 

EIPR 2.6 2.7 3.1 3.2 3.2 3.4 3.6 3.8 

Optimized 
LATE 

2.1 2.2 2.4 2.6 2.8 3.1 3.2 3.3 

 
 

Fig 5.2 Comparison of no of task vs SLR 
 

5.3.2 Speed Up: Speed up is the ratio of the 
sequential execution time to the parallel execution 
time. The given Table 5.2 and Figure 5.3 show 
Comparison of no of task vs Average Speed Up. 
 

Table 5.2. Average Speed Up 
 

Algorithm Number Of Task 
30 40 50 60 70 80 90 100 

EIPR 4.2 4.6 5.1 5.5 5.8 6.0 6.2 6.4 

Optimize
d LATE 

4.8 5.2 5.9 6.4 7.1 8.2 8.7 9.2 

 

 
 

Fig 5.3. Comparison of no of task vs Averages 

SpeedUp 

 

5.3.3 Running time of the algorithms: The running 
time (the scheduling time) of an algorithm is 
execution time for obtaining the output schedule of a 
given task graph. The given Table 5.3 and Figure 5.4 
show Comparison of no of task vs Average Running 
times. 
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Table 5.3. Average Running Time

Algorithm Number Of Task
30 40 50 60 70

EIPR 1.4 1.47 1.59 2.1 2.5

Optimized 
LATE 

1.5 1.58 1.6 2.8 3.1

 

Fig 5.4. Comparison of no of task vs Average 

Running Time 

 

5.3.4 Performance Analysis of CPU Utilization (%)
The LATE algorithm is used to number of virtual 
machines to calculate the CPU Utilization (%). The 
given Table 5.4 and Figure 5.5  show Comparison of 
number of Virtual Node vs CPU Utilization (%).
 

Table 5.4. CPU Utilization (%)
 

Algorithm Number of Virtual Machine
1 2 3 4 

EIPR 81 67 61 52 48

Optimized 
LATE 

77 
 

63 57 49 45

 

Fig 5.5. Comparison of no of Virtual Node vs CPU 

Utilization (%) 
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Average Running Time 

Number Of Task 
70 80 90 100 
2.5 2.8 3.5 3.7 
3.1 4.6 5.1 6.1 

 
Comparison of no of task vs Average 

CPU Utilization (%): 
The LATE algorithm is used to number of virtual 
machines to calculate the CPU Utilization (%). The 

5.5  show Comparison of 
number of Virtual Node vs CPU Utilization (%). 

CPU Utilization (%) 

Number of Virtual Machine 
5 6 7 8 
48 42 39 36 
45 37 34 28 

 

Comparison of no of Virtual Node vs CPU 

6. CONCLUSION  

Motivated by the real
node heterogeneity, we have analyzed the problem of 
speculative execution in cloud. We identified flaws 
with both the particular threshold
algorithm in clouds and with progress
algorithms in general. We designed a simple, robust 
scheduling algorithm LATE, which uses estimated 
finish times to speculatively execute the tasks that 
hurt the response times the most. LATE perf
significantly better than clouds default speculative 
execution algorithm in real workloads. 
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